If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -7y + -4 = -3y2 Reorder the terms: -4 + -7y = -3y2 Solving -4 + -7y = -3y2 Solving for variable 'y'. Combine like terms: -3y2 + 3y2 = 0 -4 + -7y + 3y2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.333333333 + -2.333333333y + y2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + -2.333333333y + 1.333333333 + y2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + -2.333333333y + y2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + -2.333333333y + y2 = 0 + 1.333333333 -2.333333333y + y2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 -2.333333333y + y2 = 1.333333333 The y term is -2.333333333y. Take half its coefficient (-1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. -2.333333333y + 1.361111112 + y2 = 1.333333333 + 1.361111112 Reorder the terms: 1.361111112 + -2.333333333y + y2 = 1.333333333 + 1.361111112 Combine like terms: 1.333333333 + 1.361111112 = 2.694444445 1.361111112 + -2.333333333y + y2 = 2.694444445 Factor a perfect square on the left side: (y + -1.166666667)(y + -1.166666667) = 2.694444445 Calculate the square root of the right side: 1.6414763 Break this problem into two subproblems by setting (y + -1.166666667) equal to 1.6414763 and -1.6414763.Subproblem 1
y + -1.166666667 = 1.6414763 Simplifying y + -1.166666667 = 1.6414763 Reorder the terms: -1.166666667 + y = 1.6414763 Solving -1.166666667 + y = 1.6414763 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + y = 1.6414763 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + y = 1.6414763 + 1.166666667 y = 1.6414763 + 1.166666667 Combine like terms: 1.6414763 + 1.166666667 = 2.808142967 y = 2.808142967 Simplifying y = 2.808142967Subproblem 2
y + -1.166666667 = -1.6414763 Simplifying y + -1.166666667 = -1.6414763 Reorder the terms: -1.166666667 + y = -1.6414763 Solving -1.166666667 + y = -1.6414763 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + y = -1.6414763 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + y = -1.6414763 + 1.166666667 y = -1.6414763 + 1.166666667 Combine like terms: -1.6414763 + 1.166666667 = -0.474809633 y = -0.474809633 Simplifying y = -0.474809633Solution
The solution to the problem is based on the solutions from the subproblems. y = {2.808142967, -0.474809633}
| 5x=80x^-1/2 | | 5x-5(-x+13)=25 | | 13x-2(3x-4)=6(x+20)-4 | | 25+7a=12a | | x/(-6)=2 | | 3a+6=a+2 | | -7a+8a+5-10= | | 17/13=y/11 | | 1/5(5) | | 4-(2c-6)=4(c+1)+2c | | 4x+4=x-10 | | D(a-b)=c | | -3/2x=-6 | | 1.2+2(x+.6)=5x-9.8-4x | | 5/(2x+9) | | 2(2t+-3)=6(t+2) | | -16=x-5 | | 5t-3t-2=12 | | x+4-3x=24 | | 6m+[9m-3]=m | | x(x+8)=480 | | x^2=-1/63 | | -7a+8a+5-7a-10= | | 14+2x(x-1)=-2x | | 3p+2p=35 | | 6k+9=24 | | 2/x+2+4/3x | | a*b=3422 | | 99=w(2w+7) | | 2/x+2=4/3x | | axb=3422 | | 5-(x-3)=10-3x |